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Abstract

Fault detection systems come in a variety of formats and are used in many di↵erent types of
machines and industries. They can be used to perform fast and accurate detection, classification
and analysis. The need for user interaction can be decreased and by that the general level of
automation can be increased.

This project has been conducted together with B&R Automation and Imogo. B&R specializes
in knowledge and products for the automation industry, including programmable logical con-
trollers, vision sensors and vision solutions. Imogo develops new, more environmental friendly
textile dyeing machines. In these machines the current fault detection system require more man-
ual work and in order to further automate the system, one possibility could be to use machine
vision. The purpose of this thesis is to investigate whether a B&R vision system could be used
for fault detection and quality control in Imogo’s textile dyeing machine.

A literature review has been undertaken, where the general topics of fault detection and machine
vision have been investigated, as well as a more specific review of di↵erent potential solutions for
the problem at hand. Di↵erent tests, where all key parameters, such as sensor configurations,
lighting and resolution, have been performed in order to evaluate the system.

The vision sensor along with the program have been tested and evaluated on the real machine
and the result shows both advantages and disadvantages. The program is based on comparisons
of mean grayscale and grayscale deviation values between an acquired image and an image of
a correctly dyed piece. The system performs well on static fabric and manages to detect faults
of di↵erent degrees. The main focus of the system is to detect if a fault has a occurred or not,
especially large faults, but the program can also provide some additional information about the
cause or location of the fault. For further development, a number of tests and di↵erent config-
urations can be done. With more knowledge and more testing this detection method has the
potential to be both robust and dynamic, while still being sensitive enough.

The project contributes to the field of machine vision and fault detection. This application
di↵ers in many ways from the common use cases for machine vision, which perhaps shows how
versatile vision systems are.



Sammanfattning

Feldetekteringssystem finns i flera olika varianter och används inom många olika typer av indus-
trier och maskiner. De kan användas för att utföra snabb och noggrann detektering, klassificering
och analys. De kan även bidra till en högre grad av automatisering, eftersom behovet av op-
eratörer som utför mätningarna minskar.

Det här projektet har utförts tillsammans med B&R Automation och Imogo. B&R specialis-
erar sig p̊a kunskap och produkter för automationsindustrin och tillhandah̊aller bland annat
vision sensorer och vision system. Imogo är ett företag som tillverkar nya, mer miljövänliga tex-
tilfärgningsmaskiner. Det nuvarande feldetekteringssystemet kräver mer manuellt arbete och för
att vidare automatisera systemet skulle en möjlig lösning kunna vara ett vision system. Syftet
med det här projektet är att undersöka om ett B&R vision system skulle kunna användas för
feldetektering och kvlitetskontroll p̊a Imogos textilfärgningsmaskiner.

Vision sensorn tillsammans med programmet har testats och utvärderats p̊a den riktiga maski-
nen och resultatet visar p̊a b̊ade fördelar och nackdelar. Programmet är baserat p̊a jämförelser
av medel gr̊askala och gr̊askaleavvikelse mellan en tagen bild och en bild av ett korrekt färgat
tyg. Systemet fungerar bra p̊a statiskt tyg och kan detektera fel av olika grad. Systemets huvud-
sakliga syfte är att detektera om ett fel har skett eller ej, i synnerhet stora fel, men programmet
kan även ge viss information om orsaken till felet, samt var felet har uppst̊att. För framtida
utveckling kan flera tester och konfigurationer göras. Med mer kunskap och mer testning har
denna metod potential att b̊ade vara robust och dynamisk, samtidigt som känsligheten bevaras.

Det här projektet bidrar till ämnesomr̊adena machine vision och feldetektering. Den framtagna
applikationen skiljer sig p̊a många sätt fr̊an machine visions vanliga användningsomr̊ade, vilket
kanske kan visa hur mångsidigt ett s̊adant system är.
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1 Introduction

This section introduces the background to this thesis project. The objective and limitations are
presented as well as the division of labour.

1.1 Background

Fault detection systems are a common and perhaps even necessary feature in many machines
and industries, in order to ensure good quality and reliability. Automatic fault detection sys-
tems possess many advantages, since they can operate very fast when detecting, analyzing and
classifying di↵erent faults. They can help increase the general level of automation and perform
swift and accurate measurements and actions, as well as reducing the need for user interaction.

Traditional fault detection has mostly been based on readings from di↵erent sensors, such as
flow and pressure sensors, but the technology available on the market today o↵ers many other
potential methods. This includes machine vision, which by the means of a sensor, acquires im-
ages and extract relevant data to perform fault detection and analysis.

Imogo is a company that develops new, more e�cient and environmental friendly textile dyeing
machines. Imogo’s machines use a technology where the dye is sprayed onto the fabric by several
small nozzles, located on both sides of the passing fabric. In Imogo’s textile dyeing machines
a potential fault could for example be an unevenly dyed piece of fabric, due to clogged nozzles
or pressure drop. To detect such errors in the dyed fabric, a vision based system could be a
possible solution. It would present a higher level of automation and require less user interaction,
compared to the currently used fault detection system, based on manual readings of colour values
across the fabric, using a photospectrometer.

B&R Automation is a company that develops, manufactures and sells solutions for the au-
tomation industry. It has a wide range of products, such as Human Machine Interface (HMI),
programmable logical controllers (PLC) and vision sensors that can fit di↵erent types of appli-
cations.

1.2 Objectives

The objective of this project was to create a machine vision based quality control and fault detec-
tion system for Imogo’s textile dyeing machine using a B&R smart vision sensor. Additionally,
other potential solutions were investigated and evaluated.

The main approach was to use a B&R smart sensor to detect faults. A working solution could
be extended to also determine and locate the cause of the fault. If time allowed, a di↵erent
detection method could be tested and compared to the B&R smart sensor based solution.

1.3 Limitations

The project has been developed o↵-line, meaning that tests will be performed using non-moving
samples rather than the real dyeing machine in operating mode. These samples have di↵erent
degrees of faults but still do not cover all possible faults, colours or patterns.

The work took place in an o�ce environment at B&R which could lead to some di↵erences
when tested on the real system due to the surrounding environment. On top of this, a limited
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number of sensor/camera configurations were available. Therefore the practical equipment used
might not be the one that is theoretically optimal.

1.4 Division of labour

The labour has been divided equally in order for all participants to have equal insight and equal
right of decision making in the operations of the programs. At times, the work has been split
among the participants in order to make use of time more e�cient. The same holds for the
writing of this report.
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2 Literature review

This section presents theory and literature review of both the individual and combined key topics:
Machine Vision and Fault Detection. Other potential solutions to the project, based on the
literature review, are presented as well as an evaluation of said solutions.

2.1 Potential solutions

Machine vision is a technology used to automatically inspect and analyze a picture provided by
a camera. The picture can be transcribed and read by a computer using applied filters. The
general purpose of a machine vision system is to acquire an image, automatically analyze it and
extract relevant information. A machine vision system requires two things, a sensor to acquire an
image and software to analyze this image. These two parts can either be combined, for example
in a smart sensor, or be separate by using a camera in combination with a PC.

A fault detection system is used to monitor machines and identify when a fault occurs. The
working way of a general fault detection system can be split up in three steps: detection, classifi-
cation and diagnosis. The first step is to simply detect that a fault has occurred. The main way
of achieving this is to monitor and compare signals from the currently operating application with
its known correct operation. The second step is to classify the fault. In other words determine
the severity, type and location of the fault. The third step would be to determine the cause of
said fault and pinpoint the location of the causing part.

Traditional fault detection systems have been based on sensor readings. By the means of dif-
ferent sensors, fit for the application, data has been collected and compared to known correct
data and di↵erent thresholds. A fault is detected when readings show that a sensor output ex-
ceeds its limits. Another approach would be to base a fault detection system on mathematical
models of the system. Recent research present the additional possibility to use machine learn-
ing to further analyze gathered data. Machine learning algorithms, for example support vector
machines (SVM), can be used on existing datasets, collected from di↵erent sensors or models of
the system, to detect di↵erent faults [1]. Parameter estimation can be used in combination with
good models to produce features for diagnosis algorithms [2]. A high quality, modelbased fault
detection system requires good knowledge about the system at hand. Since many systems today
are quite complex, good models might be hard to accomplish. A third option could be to have a
vision based fault detection system [3]. A vision system is based on information extraction from
images. It could for example be colour, shape, size or a combination of them all.

Machine vision is frequently used in a variety of applications. In the automation industry, vision
systems can serve many purposes, such as detecting faults using a PC and sensor combination [3]
or to act as a supervisory controller for di↵erent machines [4]. Recent research present many
studies where machine vision is used within the agricultural industry. The purpose could for
example be to detect fruit maturity [5] or to di↵erentiate between plants and weeds [6]. In many
applications, machine vision is also accompanied by machine learning algorithms. This means
that a machine learning model is trained with di↵erent data from the application. The trained
model can then be used together with the application to perform classification and regression.
Such algorithms can achieve both fast and accurate performance [6], but on the other hand they
require quite extensive datasets. In order to train a model properly, large datasets, containing
data of the object of interest in di↵erent variations, is needed. Depending on the application,
such extensive datasets might be hard to acquire.
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As mentioned earlier, a vision system requires two things: a sensor to acquire an image and
software to analyze this image. These two things can either be performed by separate units or
by one combined unit, e.g. a smart sensor. A number of di↵erent vision software libraries exist,
e.g. HALCON, AVL and openCV [16]. While most companies turn to the more commercial
libraries like AVL and HALCON, a large amount of vision research has been made using the
open source library openCV. openCV performs well in detecting colours, edges and shapes in a
variety of applications, such as detection of lane-lines [7] and di↵erentiating between healthy and
unhealthy parts of plants [8]. Since openCV is not dependant on any specific hardware, image
acquisition can be performed by any type of camera.

Also relevant for this project is colour detection. It can be performed using machine vision
but also using dedicated colour sensors. Taking a picture using a camera brings with it much
more complexity. When recreating an object and analyzing the picture the camera is trying to
copy more than the colour patterns of the object. The camera is more sensitive to configuration
choices and limitations such as focus and distance between camera and object, while colour sen-
sors only give one output, based on the colour of the object. Colour sensors are easy to use, since
they only extract colour data from decided points of the fabric, rather than recreate an entire
image.

Colour sensors are of the type photoelectric sensors. Colour sensor work by transmitting light
and then receive the reflected light. The reflected light is then analyzed to determine the colour
of the object. Colour determination can be based on the intensity or the wavelength of the re-
flected light. The use of colour sensors is well documented in the agricultural field, where colour
is measured to estimate ripeness of fruits and vegetables, quality of soil and in determination of
a plants well-being, [12], [14], [10]. Colour sensors come in a wide range, from very basic ones,
used to di↵erentiate between red, blue and green, to advanced industrial ones with high accuracy.
Two popular solutions that have been used in many di↵erent academic projects are the TCS3200
and TCS230 colour sensors. The TCS3200 and TCS230 colour sensors are cheap and the output
is a voltage value which means that it can be used in connection with a micro controller, for
example an Arduino [15]. Another sensor that is used in multiple agricultural studies are the
sensors from nix color sensors [12], [13]. Nix color sensor is a portable wireless colour sensor that
has been used in multiple articles, for example to determine soil type and di↵erentiate between
plants based on leaf colour. The market for colour sensors is big and many industrial ones with
high accuracy and precision exists. However, these tend to come at a higher price as well.

2.2 Other possible solutions

The possible solutions presented below are researched to present more precise possible solutions.

2.2.1 Other vision systems & vision systems in general

The market for vision systems is big and many companies specialized towards the automation
industry have vision systems in their product catalog. In order to get an overview of how vision
systems most commonly are used and if there might be one better suited for the problem at
hand, a market survey has been made and any potential candidates will be presented below.

In general, the use cases for vision sensors, similar to the B&R sensor used in this project,
present online fault detection in production lines, where an image of a moving object is captured
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by a stationary sensor. Whether the object is a manufactured machine part or an object with
a text or barcode on it, or if the fault detection is based on shape, colour or alignment, the
common thing is that the field of view is relatively small. This in turn means that the distance
between sensor and object can be relatively small and the sensor can most likely be mounted in
such a way that it is part of the machine. On top of this, the sensors are most commonly used
to perform pass/fail inspections, without any further diagnostics.

This perhaps shows what kind of applications vision sensors are most commonly used for in
the industry, but it does not mean that they are limited to perform such tasks. Vision systems
have the advantage of actually looking at the result and in this project, the result tells quite a
bit about the causing parts as well.

Keyence IV3-600 smart camera

The IV3-600 smart camera series from Keyence o↵ers a total of 65 tools to use for detection
and classification [18]. Some examples of tools are learning, brightness average and colour aver-
age. A smart camera, compared to a smart sensor, can use a combination of multiple tools to
make up the final detection algorithm, which makes it possible to further extend the functionality
of a detection program. The sensor uses machine learning (ML)/artificial intelligence (AI) to
extract colours or detect objects or edges based on manually taught models of correct and/or
incorrect images. The smart sensors from Keyence can also be trained using image data where
di↵erent faults have occurred, together with the cause of the fault, to make online detection and
fault diagnostics. It could potentially make it possible to create a fault detection system based
on ML/AI, where models are trained using di↵erent data. The Keyence smart camera can have
both colour and monochrome sensors. A colour sensor would make it possible to distinguish
between fabrics of di↵erent colour, which is not necessarily the case with a monochrome sensor.
The perceived colour is still dependant on the lighting, but with the correct lighting it could po-
tentially be more straight forward to tell if a piece of fabric is incorrectly dyed if the exact colour
can actually be determined. In the IV3 Navigator, which is the HMI for the camera, acquired
images are visible and di↵erent settings and parameters can be set. The camera outputs are the
result of the logical operation of each tool and the total judgement in the form of pass or fail.
Histograms of degree of similarity, number of passes and fails, as well as the processing time and
counts for di↵erent values can also be accessed. Keyence sensors are compatible with di↵erent
PLC manufacturers and three di↵erent communication protocols: EtherNet/IP, PROFINET and
TCP/IP are available. At an installation distance of 2000 mm the field of view is 1822 (H) x
1364 (W) mm [18].

2.2.2 Sensor based solution

A camera based solution uses images and performs information extraction from these images.
This means that many di↵erent parameters, such as colour, shape and size, can be used to ana-
lyze the extracted information. However, for this project it could potentially be enough to only
analyze the colour parameter. Therefore, the following potential solutions presented below are
sensors that do not include any vision part.

For this project the main use of the camera is to analyze the colour of the fabric and there-
fore a colour sensor could be another option. A colour sensor would be a more specific and less
dynamic solution to this project but the same way the B&R smart sensor looks at the grayscale
value of an image, a colour sensor could look at the colour values, in the form of Red-Green-Blue
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(RGB) values for example. By placing colour sensors to cover di↵erent areas of the fabric, the
same way models are placed for the smart sensor, errors could be detected by registering colour
deviations. Two di↵erent colour sensors have been researched, the CSS High Resolution from
SICK and the OFP401P0189 Color Sensor from Wenglor. For the colour sensor from SICK the
diameter of the light spot size is 32mm [22] and for the colour sensor from Wenglor the working
range is 30-40mm [23].

Stemmer Line-Scan-Bar

Another potential sensor is the Line-Scan-Bar from Stemmer Imaging produced by Mitsubishi
Electric. While sensors like the B&R smart sensor and the IV3-600 from Keyence are small and
most commonly used to look at small areas, the Line-Scan-Bar is specifically made to look at
wide, flat areas, such as paper or textiles [19]. It has a small working distance of 27 mm, which
makes it less sensitive to external lighting and disturbances. With such a short working distance,
the Line-Scan-Bars, as a fault detection system, can be considered part of the machine and the
fault detection system will not require any bigger area than the one already occupied by the
machine. The maximum scanning width is 1688 mm, but more sensors could be added to cover
a wider piece. The Line-Scan-Bars have LEDs distributed along it, which makes it possible to
have uniform lighting across the fabric. The maximum scanning speed is 309 m/min.

Configurations, settings and parameters are selected by writing to di↵erent registers. Di↵er-
ent image processing functions, such as dark and white correction and interpolation, as well as
the sensor mode and output format, are also set using these register. The sensor can give both
colour and monochrome results and di↵erent options for resolution, datasize, bitrate and number
of output channels are available. The default setting gives a 24 bit RGB colour output. The
output data is captured using a Frame Grabber, which in most cases comes with built-in I/O for
communication with di↵erent systems. The communication interfaces available are CameraLink
and CoaXPress.

PLEVA Material Moisture AF.RF.MP 120

The two possible solutions stated above (Keyence IV3-600 smart camera, Stemmer Line-Scan-
Bar) are both related to vision, although the Stemmer Line-Scan-Bar does not use images. For
both solutions inconsistencies in lighting, shadows, creases will have an e↵ect on the result. An-
other approach that is entirely disengaged from these problems is using a moisture measuring
sensor.

One way to determine how the paint has been applied to the fabric is by measuring the moisture
at di↵erent parts of the fabric. If the paint is applied equally over the entire fabric then the
moisture of the fabric should be equal all over the fabric.

The moisture measurement sensors from PLEVA can approximate the wetness of a fabric by
measuring the microwave absorption of the water in the fabric. By transmitting microwave en-
ergy through the fabric and measuring the energy on the other side of the fabric with a receiver,
the absorption of microwaves in the fabric can give an estimate on the amount of moisture in
the fabric [20].

The Material moisture sensors can be used in two ways, either mounted static, AF and RF120,
or traversing, MP120. The di↵erence between the AF and RF120 is the precision of the measure-
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ments. Values measuring moisture of fabrics is given in gH2O/m2, where the measuring range
for the AF120 is 0..2000gH2O/m2 and for RF120 is 0..200gH2O/m2, the measuring range for
MP120 is the same as for AF120.

Both MP120 and AF120 are very accurate in measurements. The measurement accuracy for
the static sensor is ±1% and not better than ±0.3gH2O/m2 while for the traversing the mea-
surement accuracy is ±1% and not better than ±0.8gH2O/m2.

Both microwave sensors would be connected to the microwave evaluation electronic MW 120,
used to connect the sensors and to translate sensor values into humidity values [20]. MW 120
uses PLEVA’s own protocol for PLEVA systems, but optionally CAN-Bus can be used. Both
sensor setups require a frame that the sensors are connected to, the fabric is then flowing through
the frame with one sensor on either side of the fabric, for AF120 the frame depth is 250mm and
for MP120 the depth is 520mm. This means that for it to be able to be integrated in the Imogo
machine there would have to be space in the mechanical design to fit the frame so that fabric
can flow freely through it.

The static measuring heads are usually used in combination with a system where fabrics are
lowered into paint and a padder applies pressure to the fabric to control the amount of paint
in the fabric, called padder control. This means that the configuration consists of three static
measuring heads, one placed at each edge of the fabric and one in the center. The center sensor is
used as reference and the edge sensors are used to calculate the di↵erence between the edges and
the center. In combination with padder control, this would be used to decide how the pressure
of the padder is applied across the fabric [21]. The traversing sensors can cover the entire fabric
and can instead be used to automatically adjust to the fabric width. The traversing heads will
however not give single point measurements but give information of the entire fabric.
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3 Theory

The section below describes the theory of all the hardware and software configurations, together
with di↵erent settings, relevant for this project. The dyeing machine and its constraints on the
application are also presented.

3.1 B&R smart sensor/camera

When it comes to vision systems, both sensors and cameras can be used. In this project, the
B&R smart sensor has been used. The word ”smart” means that image processing software is
built into the hardware and no additional image processing is needed. The di↵erence between
a camera and a sensor lies in its ability to multitask. The sensor can only run one Vision-
Application at a time. It can switch between di↵erent VisionApplications, but only if they
contain the same type of VisionFunction. A camera on the other hand can run multiple types
of functions and applications. VisionApplications and VisionFunctions are covered in section 3.2.

Figure 1 shows what the sensors looks like, together with the di↵erent light segments. The
figure also shows the orientation of the sensor resulting in an upright image in the HMI.

Figure 1: The di↵erent lighting segments of the sensor

The quality and features of an image are dependant on a variety of configurations that can
be made to the camera. These will be described below.
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3.1.1 Lighting

To obtain an image a camera captures the reflected rays of light from an object, thus the lighting
is of highest importance. The lighting is also crucial when it comes to detection of surfaces and
contours. For the B&R smart sensor/camera, the lighting can either be the internally built in
LED segments, an external lighting or both.

The camera has four built in LED flash segments, which can obtain green, red, blue, white,
lime and IR light. The number of segments, as well as which segments that are used, are op-
tional. The choice of segment colour is important, since it a↵ects which colours the camera can
detect. Di↵erent light colours can be used to highlight or hide objects of di↵erent colours. A red
object will not be visible through the eyes of a sensor, if the light colour too is red. Any other
colours will however still be visible. White light can be used to detect all colours, which makes
it the optimal choice for an application where the colour to be detected might not be known.
External lighting can be used if necessary, for example if there is a need to have more evenly
illuminated object or stronger lighting. The light intensity as well as the distance between the
external lighting and the object of interest a↵ects the result.

Exposure time is the time during which the shutter is open, allowing light to reach the sen-
sor. The exposure time is closely related to the lighting, since less lighting requires a higher
exposure time and vice versa. This time can be changed automatically or manually in the HMI
application in order to fit the application.

3.1.2 Lens

A lens is used to alter incoming light by either focusing or dispersing the rays. Depending on the
shape of the lens, the light can be focused on one point, using a convex lens, or dispersed, us-
ing a concave lens. The characteristics of the light will be depending on the properties of the lens.

The lens can a↵ect the properties of the camera in a variety of ways, but for this project only two
aspects are of interest. These are the field of view (FOV), which depends on the focal length,
and the depth of field (DOF), that depends on the aperture of the camera. For a camera to
get a clear picture, a convex lens can be used to focus the reflected light from an object to a
single point, the focal point. The focal length, the distance between the lens and the focal point,
indicates how strongly the lens converge light. A shorter focal length means that the lens will
bend the incoming rays to a point closer to the camera while a longer focal length means that
the lens will converge light less e↵ectively, see Figure 2. This means that the focal length will
a↵ect the FOV of the camera since a shorter focal length means that incoming light from an
angle less perpendicular to the lens will still be focused on the focal point.
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Figure 2: Focal length and focal point related to the incoming light and lens

Aperture is the opening through which light can travel into the lens and is annotated with
an f-number, the larger the f-number the smaller the aperture. The size of the lens opening can
be altered and will have di↵erent e↵ects on the picture depending on size. A larger aperture
means that more light will travel through the lens and the DOF will decrease. A smaller aperture
will increase the DOF.

3.1.3 Sensor

An image sensor consists of multiple pixels that can register how much light that falls upon
them. The pixels will convert the amount of light to electrons which can then be converted to a
voltage and read as a signal. There are two main sensors that di↵er from each other, the CMOS
and CCD sensors. For the B&R cameras CMOS sensors are used. The main di↵erence between
the sensors are that for the CCD sensor the voltage from multiple pixels are transferred from
the chip to output nodes, while for the CMOS sensor the voltage is being read from every single
pixel [11]. Both sensors can only read values from dark to bright and therefore unable to read
colours, further colour filters can be added to translate to colour values.

The resolution of an image is measured in how many pixels that are used, where the num-
ber of pixels are dependant on the size of the sensor. For the B&R camera/sensors the possible
sensors are 1.3, 3.5, and 5.3 megapixels. A larger amount of pixels means a higher resolution,
which in turn means better precision when processing the picture. However, there are also down-
sides to a higher resolution. More pixels also means more data and therefore a higher demand to
process the picture. A larger amount of pixels requires a larger sensor. This means that the lens
has to be able to fill the whole sensor with the image, which creates restraints on the options for
the lens. A short focal length might lead to that only smaller sensors can be used.

3.2 Sensor software

3.2.1 VisionApplications, VisionFunctions & models

The three parts VisionApplication, VisionFunction and models will be referenced throughout
this report. Therefore a description of these parts and their functionality is presented below.

Figure 3 shows how the three parts are related to each other. A VisionApplication can be
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considered as a shell, holding both the image processing program and the image settings. The
VisionApplication holds all the functions and commands related to image acquisition, as well as
di↵erent settings for an acquired image, such as width and height. However, in order to extract
any information from an acquired image, an image processing program, a VisionFunction, is
needed. A number of di↵erent VisionFunctions exist, each providing a di↵erent functionality,
that can be used to fit di↵erent applications. The di↵erent functionalities could for example be
to detect objects of a certain shape or to present the mean grayscale of an image or part of an
image. Most of the VisionFunctions available for the sensor are model based. This means that
they require a model to be defined in order to work. The purpose of the model is to set the
region of interest (ROI) in the image. Such a model is defined manually in the HMI application,
once the first image is acquired. When a new image is acquired, any extracted information will
simply be extracted from the region defined in the model. This makes it possible to exclude
potential irrelevant backgrounds or other irrelevant patterns in an image. Up to twenty models
can be defined for each VisionFunction. Information can therefore be extracted from both an
entire image and di↵erent sections of an image.

Figure 3: VisionApplications, VisionFunctions & Models

The camera and sensor from B&R Automation is compatible with a variety of di↵erent functions.
However, for this project two di↵erent functions, PixelCounter and Measurement, has been used
and therefore only they will be further explained.

The PixelCounter VisionFunction counts the pixels in a predefined region of interest and can
display pixel information. Two values are used in the fault detection application: Mean grayscale
and grayscale deviation. The mean grayscale value compiles the mean of the gray value of all
the pixels in the picture. The range of grayscale is 0 to 255, where 0 means pitch black and 255
completely white. The grayscale deviation shows how large the di↵erence is between the darkest
and brightest pixel in the picture.

Measurement is used to determine distances and radii of objects in an image. By using a prede-
fined region of interest and tuning parameters to specify expected characteristics of the wanted
object in the picture, the measurement function can find objects and provide information about
distance and dimensions.
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3.2.2 HMI application

The B&R smart sensor comes with a webb based HMI application, where di↵erent sensor settings,
such as focus and exposure time, can be changed manually. The models for the VisionFunctions
are also defined in the HMI application. On top of this, the HMI application displays the ac-
quired image, as well as the corresponding function values, such as mean grayscale. An image of
the HMI can be seen in Figure 4.

Figure 4: The B&R sensors web based HMI

The functions and the displayed values can be accessed from Automation Studio as well. Au-
tomation Studio is the software from B&R used to program the PLC, HMI, and handle the
communication for the system. In this way, the created application can be automated in such a
way that image acquisition and information extraction is performed automatically and cyclically.
The model(s) defined for the VisionFunction must however be created manually in the HMI.

A simple, webb based HMI has also been developed for this project specifically, in which the
operator can choose between di↵erent programs and see the alarm history. This was made during
this project to make testing and gather data easier. A full description of the developed HMI can
be seen in section 5.

3.3 Imogo’s textile dyeing machines

Imogo’s textile dyeing machine has two di↵erent configurations, one for woven fabrics and one
for knitted fabrics, see figure 5. Due to the characteristics of knitted fabrics, it can not be as
freely flowing to prevent the sides of the fabric from curling. The dye is applied onto the fabric
using two arrays of spray valves, one on each side of the fabric. Each array has a number of
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spray valves, that can be turned on or o↵ to fit the width of the fabric. The spray valves spray
at a certain angle, which means that the paint from two valves will overlap at the edges.

Figure 5: Imogo’s textile dyeing machines (imogo.com)

The configuration for the knitted fabric put restraints on the possible ways of mounting a po-
tential vision system, as well as the area, which can be captured by the sensor. The arched
shape under the fabric, due to the cylinders, will cause di↵erent shadows to appear when an
image is acquired. In order to avoid potential problems with di↵erent colour appearance over the
cylinders, it has been chosen to only look at the area given by a 120 degree angle of the cylinder.
Equation (1) shows how the restriction on how many pictures the sensor has to be able to take
every second is calculated.

⇡rcylinder
3

x � vmachine

! x � 3vmachine

⇡rcylinder

(1)

rcylinder(m) is the radius of the cylinder the fabric is placed on, x(pictures/s) is the number of
pictures the sensor can take per second, vmachine(m/s) is the speed of the Imogo machine i.e. the
amount of fabric passing per second. From equation (1) the processing time can be calculated
according to equation (2)

tprocessing  ⇡rcylinder
3vmachine

(2)

where tprocessing(s/picture) is the processing time of the sensor to take one picture.

Fabrics of di↵erent widths, ranging from 1.6 m to 3.6 m, can be processed in the machine.
The max width of 3.6 m will be the lower limit of the field of view. The potential ways of
mounting a vision system is also limited, due to the construction of the machine. Therefore, the
distance between the sensor and the fabric can not exceed 1 m.
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4 Method

In this section all steps taken to develop the application are explained. The section starts with
a description of the equipment and setup used. Next follows a detailed description of all the
performed tests.

4.1 Equipment and setup

The list below shows the hardware, software and other external equipment used in this project
to perform and evaluate di↵erent tests.

• B&R Smart Sensor

– 1.3 MP Sensor

– Focal length 12 mm

– F-number 4

– 2/3 inch sensor size

• Seven di↵erent textile samples

• Automation Studio

• Vision function Pixel Counter

All tests are performed in an o�ce environment which means that the external lighting used
consists of ceiling lights and no light disturbances are present. There are no other machines or
equipment that interferes with the camera. The camera used for the tests is not configured the
same way as the final camera, but will be used to try to replicate how the final camera will
behave with regard to aspects such as resolution of the picture.

4.2 Preparatory work

Before any development could be undertaken, a number of preparations had to be made. The
purpose of the preparatory work was to gain both general knowledge about the field of study and
its possible usages relevant for this project, and specific knowledge about the tools and programs
needed. The preparatory work also includes setting up a plan for how the final system should be
created, based on the gathered information. All parts of the preparatory work will be described
below.

4.2.1 Literature review

A literature review was done in order to gain some general knowledge about the key topics
machine vision and fault detection. The literature review puts in perspective how these topics
have been used and configured in other projects and serves as good background knowledge when
making decisions and stating facts.

Information for the literature review has mainly been acquired through the LUBsearch database,
but also through di↵erent websites.
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4.2.2 Pre-study of available B&R material

Di↵erent B&R specific exercises were gone through, in order to acquire some basic, necessary
knowledge about the specific tools needed for this project. This involves learning about the main
program Automation Studio, how to create and run programs and how to configure the correct
settings for communication between di↵erent parts of the system. It also involves more specific
knowledge about the sensor, its settings and available functionality and how it potentially could
be used in this project.

To determine what functionalities of the camera are relevant for this project, tests and research
were put into the pre-defined vision functions of the camera. Table 1 shows a short description
of the functions available on the B&R smart sensor. Both Code Reader and OCR are used to
read codes and characters only, and are therefore not relevant for this project. Matching and
Blob could be used to detect patterns on the fabric, since the fabric is supposed to be one colour
there should not be any patterns. However, both functions require some training, meaning that
a person has to select the area or the object that is used to find patterns.

Measurement is used to calculate position, distance, and dimensions of chosen objects. By
using beforehand taught-in shapes such as circles and edges measurement can detect di↵erent
objects in an image. To further optimize the search for objects, parameters can be tuned such
as edge transition or edge contrast. Measurement is further discussed as a solution to further
improve the error detection as the chosen function to find errors was Pixel Counter.

Pixel Counter is a vision function that can calculate information based on the grayscale value of
pixels in an area. By selecting an area of the image, called a model, Pixel Counter can calculate
the mean grayscale value of the pixels in the selected model, the deviation of the grayscale values,
max and min grayscale value, number of pixels in the area.

Function Description
Code Reader Read QR codes and bar codes.

Blob
A Blob is an area where the grayvalue of the pixels are similar. Can find
Blobs within a picture.

Matching
By selecting one object in an image, similar objects can be found in the
same image. Can either be based on grayscale value or contours.

OCR Trained data to recognise characters.

Measurement
Calculates position, distances, and dimensions of chosen object in an
image.

Pixel Counter Calculates information about pixels in a chosen area of the image.

Table 1: Description of the available functions of the smart sensor

4.3 Development

The development of the final solution can be split up into three parts. Initially, a draft of how
the program should work, which functions to use and how these had to be configured was done.
Di↵erent potential questions, problems and requirements were stated and all the di↵erent tests
required to answer said questions were planned. Once the main idea was set, all the tests were
performed and evaluated. The program was continuously updated, based on the test results.
The final step was to test the program and setup on the real machine and evaluate and improve
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its performance. Below all the parts of the development phase will be further described.

4.3.1 Program overview

As mentioned in section 4.2, the vision function PixelCounter was determined to be the one best
suited for this project, since it can be used to extract grayscale data from an entire image. The
general program idea was to create a fault detection program based on comparisons of mean
grayscale values and grayscale deviation between currently acquired images and an image of a
correctly dyed fabric. An image of a correctly dyed piece will have a specific mean grayscale
and a low deviation. An incorrectly dyed piece will then either have the wrong mean grayscale
value, if the colour is di↵erent, or a larger deviation, due to white spots. To further extend the
program, more models, covering specific areas, could be added to make further analysis of what
kind of fault that had occurred. On top of this the system should be robust, require as little
operator interaction as possible and meet the timing requirements set by the machine.

A number of factors, such as accuracy, lens, resolution and lighting, a↵ect the system. The
measured grayscale values must be accurate and reliable in order for the system to be able to
di↵erentiate between di↵erent samples. The lens a↵ect both the FOV and the resolution and it
had to be determined what specific lens to use and to make sure that this lens does not result in
a too poor resolution. Lighting is perhaps the most important factor, since it a↵ects numerous
things. The number of light segments to use had to be determined, as well as how di↵erent
ambient lighting and light disturbances a↵ect the system.

4.3.2 Tests

Reliability and accuracy of mean grayscale value and grayscale deviation The Pixel-
Counter vision function provides the possibility to determine the mean grayscale of an image, as
well as the deviation in grayscale. In order for the solution to be reliable, the grayscale measure-
ments must be consistent between measurements and accurate in such a way that they match
the appearance of the fabric. Textile samples with di↵erent faults must result in di↵erent mean
grayscales and deviations in order for the application to be able to di↵erentiate between them.

The grayscale measurements make up the base for all tests. The measurements will di↵er de-
pending on aspects such as lighting and lens configuration. This will be described below, but
as a starting point tests were performed to see the overall accuracy and consistency between
measurements on the same piece of fabric. These tests were performed using di↵erent variations
of the built in LED segments as lighting.

E↵ect of ambient light and light disturbances Lighting is a key factor when it comes to
image acquisition. In our case, di↵erent lighting will result in di↵erent measured grayscales. The
importance of lighting in this project does not necessarily lie in the exact illuminance or type
of lighting used, but rather in the use of consistent lighting. Whether a light is consistent, even
in the presence of a disturbance, might however be a↵ected by the original ambient lighting,
which in this case is considered to be normal ceiling lights. In order to determine the e↵ect of
ambient lighting, light disturbances and the combination of the two, tests were performed using
two di↵erent ambient lightings and a flashlight as disturbance. The e↵ect of a disturbance is
also a↵ected by the distance between the disturbance and the sensor. A distance of 30 cm was
chosen for the tests. In a real factory it is assumed that potential light disturbances would be
located at a distance further away than 30 cm and therefore the test would consider the worst
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case scenario. Di↵erent angles of the disturbing lighting were also tested. On top of this, it was
investigated if a disturbance would a↵ect the image even if the disturbance was cropped out.

Di↵erent lens and sensor configurations A number of di↵erent parameters interact with
each other and a↵ect the final solution. Two key parameters are the field of view and the image
resolution. These parameters are a↵ected by the choice of sensor, lens and the distance between
sensor and object of interest.

The design of the real machine limits the amount of options to mount the sensor(s) and there-
fore the max distance between sensor and object is considered at 1 m due to space limitations.
Fabrics of di↵erent widths can be processed in the machine, but the widest one of 3.6 m sets the
lower limit of the field of view (FOV).

An external, interactive Excel document from B&R Automation, containing information and
calculations of di↵erent lens and sensor configurations, was used to determine the optimal setup.
Based on the limited distance between sensor and object, the lens providing a field of view as
big as possible was chosen to minimize the number of cameras required to cover the entire width
of the fabric. This also a↵ected the resolution. The camera available for testing did not have the
correct lens. In order to test the resolution resulting from another lens, the distance between the
sensor and object was changed to simulate the same resolution and width of the image.

Increasing the number of models The models used by the VisionFunction are manually
tuned but can then be saved and used on all pictures taken with the sensor. For more simple
evaluations of the fabric, such as determining the colour shade, one model is used to cover the
whole visible fabric. However, when making more complex diagnostics on the incorrect dyed
fabrics, a higher number of models are used on the picture. Tests were performed, where a
number of equally sized models covering the entire image, were defined. Three models are used
to cover the spray-area of one nozzle, one each for the left, middle and right side. Since the
spray-areas of the nozzles overlap with each other, the right side of one nozzle will also be used
to analyze the left side of the nozzle next to it. Figure 6 shows what the models look like. All
models are named, based on which part of each nozzle the look at. Model L1 looks at the left
part of nozzle 1. The three models used to cover one nozzle will be called a segment in this
report.

Figure 6: Models to analyze 4 segments. For segment 1, L1 is the left part of the first segments,
M1 the middle part, and R1 the right part which also will be used to analyze the left part of the
second segment

25



Parameter tuning To be able to analyze new images of the fabric, the values read by the
camera have to be compared in order to evaluate if they indicate an error or not. In the sensor’s
start up phase the camera will adjust its settings as well as its values that will be used in com-
parisons to evaluate new pictures of the fabric. Using the function ”image acquisition settings”,
which is a predefined function for the sensor, it will tune both focus and exposure time itself.
Further, pictures are taken on a correctly dyed fabric and values are saved. The values are used
to compare the grayscale value and the deviation of new pictures of fabrics to determine if they
are correctly dyed or not.

The values gathered during the start up phase of the camera will also be used to set the o↵sets
used when comparing values. For every picture the grayscale and deviation values vary even
when taking pictures of the same object. Therefore there has to be a region in which small devi-
ations of values are accepted. An o↵set is chosen which will be added and subtracted to create
a margin which the measured grayscale and deviation values may stay inside without signaling
that there is an error in the dyeing process.

There are two di↵erent o↵sets that have to be decided, one for the whole fabric to decide if
the fabric is the same colour according to the camera or if the colour of the fabric has changed,
this could occur if for example the lighting in the room were to change. The second o↵set is when
looking at the di↵erent models to decide if there are colour patterns on the fabric, for example
spots were the nozzles have not dyed the fabric.

Tests were performed to measure the mean grayscale and grayscale deviation on di↵erent fabrics,
in order to get information of how small or large the di↵erent o↵sets need to be. Three di↵erent
methods for setting an o↵set were evaluated.

Resolution The resolution of the camera will determine how easy it is to detect spots and
lines that are incorrectly coloured on the fabric. A lower resolution means that every pixel has
to capture a larger area, therefore small errors might be merged with correctly dyed parts of the
fabric and hard to detect. Di↵erent sensors, lenses and installation distances result in di↵erent
resolutions and therefore di↵erent combinations had to be tested and evaluated. Since only one
sensor, with a specific lens, was available, the performance of other configurations could not be
properly tested. But by placing the sensor at di↵erent distances from the fabric, the di↵erent
resolutions and their e↵ect on the images could be simulated. Figure 7 shows two di↵erent setups
corresponding to a 3.5MP and a 1.3MP sensor.

Figure 7: Pictures of the same part of the fabric, corresponding to a 3.5 MP sensor on the left,
and a 1.3 MP sensor on the right
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4.4 Test subjects

The tests have been carried out on a number of di↵erent fabrics. Two samples represent a cor-
rectly dyed piece and the rest are incorrectly dyed due to di↵erent faults in the machine. The
di↵erent samples have been analyzed and classified. In order to create an application that can
di↵erentiate between the di↵erent faults, the characteristics of each fault have been determined
in means of grayscale and deviation.

Below the di↵erent fabrics are presented as well as the possible errors.

(a) Dark correctly dyed (b) Light correctly dyed (c) Fabric 1: The darker colour
on the right side indicates that
the nozzle is partially clogged
and will spray unevenly

(d) Fabric 2: The colour of the
fabric is a di↵erent colour shade
than the correctly dyed fabric
as well as the lines that are
lighter.

(e) Fabric 3: The alternat-
ing between a lighter and a
darker colour indicates that
there probably has been a pres-
sure drop in the spraying sys-
tem.

(f) Fabric 4: Unknown source
of error

(g) Fabric 5: The edges are
darker than the middle which
indicates a pressure drop in the
spraying system

(h) Fabric 6: Correct dyeing for
one nozzle

Figure 8: Eight di↵erent fabrics with explanations of the dyeing

4.5 On site test

To make a final evaluation of the performance of the system the sensor along with the code was
tested on the real machine. The plan was to test the system on the machine, while the machine
was operating, but that was unfortunately not possible. Di↵erent tests that would evaluate the
complete system, as well as smaller algorithms, were planned and performed. This includes de-
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termining how well the system detects faults on both still and moving fabrics and how well it
handles speed requirements and lighting changes. Since the machine was not operating during
the test, actions like moving fabric had to be performed manually by pulling a loose piece of
fabric. When pulling the fabric through the machine the fabric does not move with a constant
velocity and it does not match the speed of the machine. It was only done to see how the sensor
can handle objects that are moving. Faults were simulated using a small piece of white fabric
that was placed over a darker fabric. The sensor was placed at a distance of 0.5 m from the
fabric, which gave a FOV of 258 mm.

The test setup can be seen in Figure 9 and Figure 10 shows how images of non-moving fab-
ric, placed on the cylinder, are acquired.

Figure 9: Camera setup when taking pictures of fabric in the real machine. The fabric is moving
through the top cylinder

Figure 10: Camera taking picture of fabric lying still. The fabric is lying still on the cylinder to
simulate the real machine when standing still
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5 Results

In this section the results of all performed tests are presented, as well as the performance of the
resulting solution.

For a number of the tests, di↵erent light segments on the sensor will be used, see Figure 1
in section 3.1 for a description of the segments. Many tests are based on measurements of mean
grayscale and grayscale deviation. These values are dependant on a number of factors, such as
distance between sensor and object, lighting, exposure time and focus. The importance of these
tests and their result do not necessarily lie in the exact value, but rather in the relation between
the value and a certain setting.

5.1 Test and Evaluation

5.1.1 Reliability and accuracy of mean grayscale and grayscale deviation values

Table 2shows the grayscale measurements for the correctly dyed piece of fabric and table 3 shows
the measurements for the similar coloured but incorrectly dyed piece of fabric. Five measurements
for each choice of segment were taken in order to provide some information about how consistent
the application is.

Segments 0101 1010 0010 1101 1111
Measurement 1 113.24 112.39 62.82 164.60 209.79
Measurement 2 114.39 112.40 62.60 164.32 209.61
Measurement 3 114.26 112.24 62.70 164.40 209.68
Measurement 4 114.35 112.38 62.52 164.34 209.66
Measurement 5 114.09 112.39 62.61 164.53 209.69

Average 114.066 112.36 62.65 164.438 209.686

Table 2: Grayscale values with di↵erent segments active when taking pictures of the correctly
dyed fabric

Segments 0101 1010 0010 1101 1111
Measurement 1 153.84 143.33 79.50 212.94 243.54
Measurement 2 153.81 143.13 79.38 212.90 243.51
Measurement 3 153.84 143.25 79.55 212.82 243.52
Measurement 4 153.80 143.11 79.55 212.77 243.48
Measurement 5 153.83 143.19 79.49 212.67 243.46

Average 153.764 143.202 79.494 212.82 243.496

Table 3: Grayscale values with di↵erent segments active taking pictures of the incorrectly dyed
fabric Fabric 2

The overall consistency between measurements is good. The values di↵er between measurements
but the deviations are in a value range less than 1. The total range for the measurements is
0-255, therefore the deviation between measurements will not have a significant impact. The
grayscale value increases when more segments, i.e more light, is used and decreases when less
light is used. A higher grayscale value means a brighter picture. Figure 11 shows the appearance
of the correctly dyed piece with di↵erent LED segments active.
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Figure 11: Appearance of correctly dyed sample using di↵erent LED segments

To test the colour deviation value within an image, between measurements, di↵erent segments
were tested on the correctly dyed fabric to see how deviation and segments are correlated. Fur-
thermore, Fabric 5 and Fabric 2 were used to test the deviation values. This since Fabric 5 has
large deviation and Fabric 2, although incorrectly dyed, has little deviation.

Table 4 shows the deviation in grayscale when using di↵erent light segments together with the
correctly dyed piece of fabric. The values are consistent between measurements, but di↵er a lot
depending on how many segments that are used. The deviation will increase when more light
segments are used and decrease when less light segments are used.

Segments 0101 1010 0010 1101 1111
Measurement 1 15.05 15.19 8.00 22.72 30.02
Measurement 2 15.10 15.21 8.04 22.75 30.03
Measurement 3 15.08 15.22 8.05 22.74 30.05
Measurement 4 15.12 15.20 8.03 22.78 30.05
Measurement 5 15.14 15.22 8.04 22.78 30.10

Average 15.098 15.208 8.032 22.754 30.05

Table 4: Deviation values with di↵erent segments active when taking pictures of the correctly
dyed fabric

In table 5 it can be seen that the deviation is roughly twice as large for Fabric 5 compared to
Fabric 2. This means that the sensor successfully manages to detect the deviations in Fabric 2,
as well as distinguishing between two fabrics with di↵erent levels of coverage.

Fabric 5 2
Measurement 1 43.90 17.90
Measurement 2 43.92 17.86
Measurement 3 43.94 17.86
Measurement 4 43.67 17.87
Measurement 5 43.59 17.86

Average 43.084 17.87

Table 5: Deviation values with segments 0101 active when taking pictures of the Fabric 5 and
Fabric 2 from Figure 8
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5.1.2 E↵ect of light disturbances, ambient lighting and colour of fabric

Two tests were performed with two di↵erent ambient lightings and a flashlight as disturbance.
The flashlight was located at a distance of 300 mm from the sensor and was tested at four di↵er-
ent angles. An illustration of the test can be seen in Figure 12, where the fabric and the sensor
are displayed, together with the di↵erent positions of the flashlight.

Figure 12: Illustration of disturbance test

Table 6 shows the grayscale measurements when the ceiling lights were turned on and table 7
shows the measurements when the ceiling lights were turned o↵. The reference case is when
ceiling lights are turned on or o↵ and no disturbance is present.

Segments 0101 1010 0010 1101 1111
Ceiling lights - Reference 131.63 144.46 74.43 200.78 237.62

Light from behind 132.58 145.68 74.76 201.59 237.71
Light perpendicular 131.81 145.67 75.30 200.95 235.63

Light facing the sensor at an angle 133.40 146.18 75.51 202.95 235.77
Light from direct backlight 160.05 166.24 87.82 210.87 242.41

Di↵erence between no disturbance and direct backlight 28.42 21.78 13.39 10.09 4.79

Table 6: Grayscale value with ceiling lights on and a flashlight at di↵erent positions while taking
pictures of the correctly dyed fabric
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Segments 0101 1010 0010 1101 1111
No ceiling lights - Reference 122.72 137.04 62.39 194.58 229.25

Light from behind 123.07 137.32 63.04 195.05 229.66
Light perpendicular 122.90 136.98 62.40 194.41 229.11

Light facing the sensor at an angle 122.11 136.43 62.20 193.66 228.52
Light from direct backlight 151.39 168.69 91.55 214.74 238.94

Di↵erence between no disturbance and direct backlight 28.67 31.65 29.16 20.16 9.69

Table 7: Grayscale value with ceiling lights o↵ and a flashlight at di↵erent positions while taking
pictures of the correctly dyed fabric

It can be seen that a change in ambient lighting, in the form of turning on or o↵ the ceiling
lights, results in a value change of around 10. This result is consistent over the measurements
for the di↵erent segments, even in the presence of a disturbance.

When it comes to the disturbance, only direct backlight has a consistent, visible e↵ect on the
measurements. However, the e↵ect varies depending on both how many segments are being used
and the ambient lighting. With the ceiling lights turned on, the biggest impact is presented when
using two light segments. The resulting di↵erence between no disturbance and a disturbance is
of value 28.42. Comparing this with the corresponding value of 4.79 for all four segments, shows
that more segments, i.e more light, reduces the impact of a disturbance. The pattern is the same
when the ceiling lights are turned o↵, but the corresponding values are a bit larger, meaning
that the impact of a disturbance will be bigger in the presence of less ambient lighting.

Both for light and dark fabrics the surrounding lighting a↵ects the sensor’s perception of the
colour of the fabric. Table 8 shows the average grayscale value of 80 measurements for four
di↵erent fabric and light setting combinations. It can be seen that the measured grayscale value
di↵ers not only between di↵erent coloured fabrics, but also between the same fabric exposed to
di↵erent lighting. It can also be seen that the lighting has a bigger e↵ect on the light fabric,
since the di↵erence in grayscale between the two light settings is 97.62, compared to 16.9 for the
dark fabric.

Light fabric Dark fabric
Ceiling lights on Ceiling lights o↵ Ceiling lights on Ceiling lights o↵

213.68 116.06 45.89 28.99

Table 8: Average grayscale values for light and dark fabrics, with ceiling lights on and o↵

Figure 13 shows the normally distributed mean grayscale values for the four di↵erent colour/light-
setting combinations. The normal distributions are based on 80 measurements of mean grayscale
and grayscale deviation for each setting. It can be seen that the measured grayscale do not di↵er
much between measurements. The standard deviation lies between 0.0430 and 0.1417. The dark
fabric, with ceiling lights turned o↵, give the highest di↵erence between measurements, but the
corresponding value of 0.62 is still very small. Since the di↵erence in captured values between
measurements are so small, the o↵set for the mean grayscale can be kept very low, regardless of
the colour of the fabric and the external lighting.
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Figure 13: Normal distributions of mean grayscale value for the four cases

Table 9 shows the average deviation in grayscale value, within an image, for the same measure-
ments. It can be seen that the deviation is larger for the light fabric than for the dark. When
the external lights are turned on, the deviation within the light fabric increases with 43%. The
same number for the dark fabric is 14%, which is small enough to not have an impact on the
systems general sensitivity. The large deviation values are due to the fact that the light is not
distributed equally across the fabric. This is more visible on the light fabric than on the dark.

Light fabric Dark fabric
Ceiling lights on Ceiling lights o↵ Ceiling lights on Ceiling lights o↵

9.32 6.51 3.33 2.93

Table 9: Average deviation values for light and dark fabrics, with ceiling lights on and o↵

When looking at smaller parts of the fabric rather than the whole picture there is a greater
di↵erence between darker and lighter colours. For a fabric that is one solid colour the grayscale
value of each model vary significantly for a lighter fabric. Creases on the fabric will create
shadows on the fabric which will be more prominent for lighter coloured fabrics. The flash of the
sensor is not able to evenly light up the fabric, which creates darker shadows at the edges of the
picture than in the center, and this will a↵ect the grayscale values for lighter fabrics. This can
be seen in Table 10.
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Model Dark fabric Light fabric
Left01 40.22 206.08

Middle01 44.10 207.78
Right01 45.52 215.52
Middle02 46.89 217.09
Right02 46.62 217.68
Middle03 47.67 213.48
Right03 46.57 209.23
Middle04 46.87 204.78
Right04 44.15 197.29

Table 10: Grayscale values for each model. For model-placement, see Figure 6

Table 10 shows grayscale values for the di↵erent models, both for light and dark fabrics. For
the dark fabric, the maximum di↵erence between two models is 6.67, while it is 20.39 for the
light fabric. Once again, the numbers are much larger for light fabric. Since the models are used
to determine which kind of fault that has occurred, the o↵sets need to be large enough to not
classify a light fabric as incorrect.

5.1.3 O↵set values

The lighting and samples used throughout all tests are not continuously controllable, which
means that only discrete patterns can be seen and used to draw any conclusions. In order to
determine good o↵sets, based on the samples and results at hand, di↵erent methods were dis-
cussed, tested and evaluated. Early on the o↵sets were simply set as a static value, that would
leave enough room to handle the deviation between measurements, but still be small enough to
not cover a fault. This value was used regardless of which light setting or fabric colour that was
used. But since it was determined that the measured values, even for a correct sample, will vary
greatly, see Figure 14 and Figure 15 , this approach had to be reconsidered.

Although it is not possible to determine a mathematical relation between grayscale and dif-
ferent settings, all approaches have been to adapt a linear relation in the form of a percentage of
the measured values. Based on how much the measured values of grayscale and deviation di↵er
between measurements, margins of ± 10% of the average values were determined to make a good
fit. If the average deviation would be 3, the margins would give the range 2.7-3.3, which is small
enough to not fit a fault and at the same time provide the system with good sensitivity.

When making comparisons between models, the mean grayscale value between di↵erent models
for light fabrics can be quite large. A third o↵set is used that is based on the grayscale value
di↵erence between models. By comparing each model with the models closest, i.e. model M1 is
compared with L1 and R1 from Figure 6 the largest di↵erence is registered and used to set an
o↵set.
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Figure 14: Mean gray value and deviation for a light fabric

Figure 15: Mean gray value and deviation for a dark fabric

5.1.4 Image acquisition

The fabric in the machine will constantly be moving, therefore it is preferable to use the image
acquisition setting function of the sensor as few times as possible. Since it requires a constant
stream of correctly dyed fabrics to attain a correct exposure time and focus from the image ac-
quisition setting function, the duration of the function will a↵ect how much correctly dyed fabric
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is needed. The duration of the function is in the range of seconds, but less than a minute. This is
considered a long time for this application. It would additionally require a person overseeing the
process every time a new exposure time and focus were to be determined. As long as the sensor
is stationary and at the same distance from the fabric, the exposure time and focus will not vary
greatly, see Table 11. Therefore, it is assumed that as long as the sensor is not moved, the same
exposure time and focus can be used for di↵erent colours on the fabric, and thus decrease the
amount of times the image acquisition setting function has to be used.

Exposure time (µs) Focus
Dark Fabric 10000 65466
Light Fabric 9989 65466
Whiteboard 7065 65466

Table 11: Exposure time and focus using the sensor function image acquisition setting

The focus is related to the distance from the sensor to the object, therefore the colour of the
fabric will not a↵ect the focus. The sensor is at a distance such that the focus will reach its
maximal value. The exposure time will change depending on the colour of the fabric, however the
max value of the exposure time is 16.8 seconds, meaning that an exposure time of 0.01 seconds
or 0.007 seconds should not a↵ect the results considerably.

5.1.5 Lens configuration & resolution

The 1.3 MP sensors, with a focal length of 12 mm, would require a distance between sensor and
object of 7100 mm, in order to capture the full width of 3.6 m. This is not possible, since the
distance between sensor and object is limited to approximately 1000 mm for the real machine.
In the case of a 1000 mm distance, the current sensor would be able to see a width of about 500
mm. This means that 8 sensors, on both sides, are required to capture the full width.

Other lenses exists and the most appropriate one would be the smallest one, with a focal length
of 4.6 mm. At a distance of 1000 mm it captures a width of 1350 mm and a height of 1080 mm.
This means that a total of 6 sensors are needed to capture the full width, 3 on each side.

(a) Distance between sensor
and fabric (b) Height of Field Of View

(c) Width of Field Of View

Figure 16: Illustration of sensor setup showing installation distance and FOV
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Di↵erent lenses have di↵erent resolutions at di↵erent distances. At a distance of 1 m, the 12 mm
lens have a resolution of 0.400 mm/pixel, compared to 1.054 mm/pixel resolution of the 4.6 mm
lens.

The test below have been made using a 1.3 MP sensor with a 12 mm lens, but the distances
between sensor and object have been chosen so that it simulates the resolution of either using a
1.3 MP or 3.5 MP sensor, both using a 4.6 mm lens.

Figure 17 shows images with two di↵erent resolutions. The sensor was placed at a distance
of 2400 mm from the fabric to simulate the resolution of a 1.3 MP sensor, with a 4.6 mm lens,
and at a distance of 1600 mm to simulate a 3.5 MP sensor, with a 4.6 mm lens. The resulting
resolutions are 0.96 mm/pixel and 0.64 mm/pixel, respectively.

The images are quite similar and hard to distinguish from each other by simple visual inspection.
The program manages to detect the three faults regardless of the sensor, which suggests that the
4.6 mm lens and a 1.3 MP sensor would fit the application.

(a) 1.3 MP sensor (b) 3.5 MP sensor

Figure 17: Resolution of a 1.3 vs 3.5 MP sensor

5.2 Program structure

5.2.1 State machine

Figure 18 shows a state diagram of how the program behaves. The program runs cyclically every
50 ms.

Initially the program performs a predefined function on the sensor which searches for the optimal
image settings. Di↵erent focus and exposure times are tested and the optimal ones are chosen. A
calibration algorithm is then performed, where twenty images of a correctly dyed piece of fabric
are acquired and stored in an array. The values are used to calculate the o↵sets according to
Section 5.1.3 as well as calculating average values for the deviation and mean grayscale value,
which are used when comparing new fabrics with the correctly dyed one.

To detect faults, there are three possible cases that the program will determine. The fabric
is correctly dyed, the fabric is one solid colour but wrong colour, the fabric is unevenly dyed.

To determine if the fabric is unevenly dyed, which would consist of spots or stripes in a dif-
ferent colour, the sensor will look at the colour deviation in the fabric. There are two cases
that has to be true for the sensor to be able to determine that the fabric is unevenly dyed:
the deviation has to be larger than the deviation added with the deviation o↵set, and the large
deviation has to be caused by an unevenly dyed fabric rather than lighting problems related to
Table 10. Determining whether the deviation is too large or not is done by checking whether
the currently measured deviation lies within the limits set during the initial calibration. If this
criterion alone was used, a change in lighting from dark to bright would also result in a fault.
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If the sensor has been calibrated and calculated its o↵set values based on a correctly dyed dark
fabric, the deviation o↵set will be quite low. The deviation for a light fabric, however, is much
higher, even for a correctly dyed one, since light fabrics are more sensitive to shadows when the
light is not distributed evenly. Therefore, when transitioning from a dark to a light fabric, the
sensor will classify the light fabric as unevenly dyed, due to the large deviation, even if it is in
fact correctly dyed. This is solved by having the second criterion, where it is first determined if
the large deviation is caused by either a fault or how the light hits the fabric, before any further
fault analysis takes place. The second criterion consists of an algorithm that compares models
within the image. The light hits the fabric with more intensity in the center and then decreases
further away from the center. The grayscale value of the two models at the edges of the fabric
are compared with each other, then the second model from the left is compared to the second
model from the right. This patterns continues until the middle model has been reached. Since
these comparisons follow the pattern of the light from the flash of the sensor when taking a
picture, more light in the middle and decreasing light intensity towards the edges of the fabric, it
is possible to distinguish between deviation caused by the lighting and caused by dyeing errors.
If the di↵erence between models is larger than a predefined value decided through experiments,
then the fabric is determined to be unevenly dyed.

If the fabric is evenly dyed, meaning that the deviation lies within its limits, the sensors in-
stead checks the mean grayscale value of the entire fabric to decide whether the fabric is the
correct colour or not. If the current mean grayscale does not lie within the limits set by the
o↵set parameters during calibration, then the fabric is deemed to be the wrong colour. This
could either be due to that the colour of the fabric has changed or that a change in lighting has
occurred, resulting in the fabric being perceived as a di↵erent colour. If 100 consecutive images,
which corresponds to 10 seconds, are deemed to be of wrong colour, the sensor will recalibrate.
The number 100 is chosen so that small, temporary changes will not result in a recalibration,
but instead be classified according to the other presented rules. If none of the cases above are
true than the fabric will be considered as correctly dyed.

When an uneven dyed fabric is registered, additional analysis is made to determine what the
source of error is. This is done by analyzing each segment that covers the area of one nozzle.
Every segment consists of three models covering the right, middle and left area of one nozzle.
The possible errors and how they are detected are presented in Table 12. When a fault is reg-
istered, an alarm is set and the program then starts over. Three models to cover each nozzle
are chosen since the nozzles overlap each other at the ends and the models should observe the
two overlapping parts as well as the middle of the segment that is only dyed by one nozzle. A
fault due to pressure drop will result in a dark-bright-dark pattern for each nozzle. The nozzles
are also connected in series from left to right, which means that a potential pressure drop will
result in the pattern growing more visible the further right it goes. Therefore the models must
be configured from left to right and a final comparison between the left half side of the fabric
and the right half side must be made, in order to properly classify it as a fault due to pressure
drop, otherwise it registers as unevely dyed for some other reason.
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Error Description

No error

The left, middle, and right model are all a similar colour,
meaning that the grayscale value for each model is equal to
the average grayscale value of the correctly dyed fabric as
well as each other.

Unevenly dyed - pressure drop
The three models of one segment are compared with each
other. The left and right models are a darker colour than
the middle model.

Evenly dyed but wrong colour
The grayscale values of the left middle and right models
are all equal to each other. However, they are not the same
colour as the correctly dyed fabric.

Unevenly dyed - Other reason None of the stated errors above are registered.

Table 12: Description of errors

Figure 18: Program state diagram

5.2.2 HMI

In order to make testing easier, as well as making the application more user friendly, an HMI
has been created. A description of the HMI and its functionality will be presented here. Images
of the HMI can be seen in Figure 19 - 22.

The HMI consists of three pages: MainPage, ServicePage and AlarmPage. If multiple VisionAp-
plications exists, the appropriate one can be chosen and loaded to the PLC on the MainPage.
Since the sensor flash can be a bit disturbing, the sensor can be started or stopped from this
page as well. In the ServicePage di↵erent parameters, such as o↵sets, focus and exposure time
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can be set and the sensor can also be recalibrated and/or acquire new settings. On top of this
it is possible to start and stop a recording. When a recording is started, a number of parameter
values and states are being logged. Once the recording is stopped, all values are saved in an
csv file and can be accessed through di↵erent programs. In the AlarmPage the di↵erent alarms
appear. Currently the following three alarms can be displayed: LightChange, WrongColour and
EmptyArray. A description of each alarm can be seen in Table 13.

LightChange
The alarm states that a change in lighting has been detected
and the sensor will simply recalibrate

WrongColour
A fault has been detected where the fabric has been incor-
rectly dyed

EmptyArray
No models have been defined and therefore the parameters
can not be set. The user needs to define models

Table 13: Description of HMI alarms

Figure 19: B&R’s web based HMI for vision sensors

Figure 20: HMI - MainPage
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Figure 21: HMI - ServicePage

Figure 22: HMI - AlarmPage

5.2.3 Data & timing results

When a recording is stopped, the resulting csv-file will be saved on the PLC. For this project,
all parameters and states, that are to be recorded, will result in two files: one file covering the
entire fabric and one file that has details about each nozzle. All parameters are logged based on
value changes, which means that if one parameter value changes, all parameters will be logged.
This could potentially result in quite large amounts of data, especially if the recording is to be
done for a long time, if not always, and might potentially require an external storage medium.

To test which datasizes the resulting files would have, the recording was kept on during five
minutes of operation. The two files were of 24.2kB and 24.5 kB, respectively. If it is assumed
that logging will be done with the same pace, an hour of recording will have a size of around 585
kB and a full 24 hour recording will have a size of less 15000 kB (= 14MB).

The application is also subject to time constraints. The machine operates at a certain speed
and the fault detection system needs to be at least as fast as the machine. A timer function, in
combination with the code being run cyclically every 50 ms, is used to make sure that images are
acquired fast enough. Tests were performed where 100 images were acquired and the average im-
age processing time was calculated. The resulting number was 75.5 ms per image. The program
is structured so that image acquisitions and fault detection can not happen at the same time.
This is done to be sure that there are no concurrency problems in the program. This means that
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it takes one cycle to take a picture, then an additional cycle to process that picture and a third
cycle to determine the fault, which means that it takes approximately 150 ms between image
acquisition and potential fault classification. When comparing the speed of the Imogo machine
and how much fabric that passes the sensor every second with the speed and area that the sensor
covers, 150 ms is considered su�cient, see section 3.3, for further explanation.

5.3 Testing on site

Tests were performed on site to see how well the program and setup works on the real application.
All information about the setup can be seen in section 4.5.

Figure 23 shows the mean grayscale and deviation captured during the tests. Three spikes
can be seen in Figure 23a and Figure 23c approximately around samples 60, 85 and 110. These
are all due to that a small white piece of fabric was put in the line of sight. In Figure 23b the
mean grayscale, together with a colour coding according to error message is presented and it can
be seen that the spikes are classified as faults, where the fabric is unevenly dyed. Since this was
the expected outcome, it means that the program successfully manages to detect and classify
these faults and changes.

Around sample 150, the fabric starts moving. From this point, it can be seen that the values
for both mean grayscale and grayscale deviation starts oscillating, but they are still considered
correctly dyed. Towards the end of the recording it can be seen that the samples show a mean
value of more than 200. This is due to the fact that the images acquired at this point are of the
cylinder and not the fabric.
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(a) Mean gray value (b) Mean gray value with colour coding

(c) Grayscale deviation

Figure 23: Captured mean and deviation, together with error message, during on site test, with
moving fabric.

Tests were also performed where the lighting was changed, or simulated by using di↵erent
coloured fabric. The program manages to detect changes in lighting going from bright to dark,
and then performs a recalibration. In the opposite direction, from dark to bright, the program
does not always manage to classify it as a lighting change and not a fault.

Accompanying Figure 23 further values where logged for each individual model to further an-
alyze the source of errors. Figure 24 shows the grayscale value for each of the models, which
were recorded at the same time as the values in Figures 23. All of the models show an increase
in grayscale value when the light fabric was placed over the darker fabric. The light fabric is
not wide enough to cover the entire image and therefore at di↵erent times di↵erent models show
an increase in grayscale value. Comparing Figure 24a with Figure 24e shows that the mean
grayscale value is lower at the start for 24a than for 24e. This is because more light from the
sensor flash hits the middle of the fabric than the corners and therefore the corners of the fabric
is constantly darker. This can also be seen in Figure 24i, where the grayscale value is lower than
in the middle models, for example Figure 24e.
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(a) Mean gray value for Left1
model

(b) Mean gray value for Mid-
dle1 model

(c) Mean gray value for Right1
model

(d) Mean gray value for Mid-
dle2 model

(e) Mean gray value for Right2
model

(f) Mean gray value for Middle3
model

(g) Mean gray value for Right3
model

(h) Mean gray value for Mid-
dle4 model

(i) Mean gray value for Right4
model

Figure 24: Gray scale values for each of the models
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6 Discussion & conclusions

This chapter covers the discussion about the di↵erent test results and the on site test, as well as
an evaluation of the program in general. Other potential solutions and improvements are also
presented, together with the final conclusions.

6.1 Camera & setup

6.1.1 Accuracy & lighting

The mean grayscale and deviation tests show high consistency. Di↵erent fabrics result in di↵erent
measurements, where these di↵erences provide enough information to distinguish one pattern or
colour from another. Most tests have been performed in combination with di↵erent light seg-
ments active and as can be seen in the tables, fewer light segments result in a darker image and
more segments result in a brighter image. This means that di↵erent baselines can be achieved
by using di↵erent number of segments. The correctly dyed textile sample used in many tests
has a dark blue colour. When using all four light segments, the corresponding gray value is
approximately 210, see Table 2. The range of grayscale values is 0-255, which means that if all
four segments are used, it causes a dark piece to appear as bright and thus limits the potential
range of grayscale values to approximately 45 (210 - 255). On top of this, all colour shades above
a a certain limit will result in a grayscale value of 255, which means that they are all classified as
completely white. Correspondingly, if zero or one segment is used it will result in a dark image,
even if the true colour might be brighter. In the same way as for the light fabric, all values under
a certain grayscale value will be classified as completely black if the lighting is too dark. In order
to maintain a decent range of values and at the same time providing an image appearance similar
to the real test object, it was chosen to use two light segments. Further tuning of appearance
can be made by changing the exposure time, if necessary.

The measurement results when testing di↵erent ambient lightings, together with a light dis-
turbance, show that lighting has a big impact on the acquired image. A change in ambient
lighting can result in significant di↵erences in overall mean grayscale and a light disturbance
from direct backlight will cause even larger di↵erences. In general the change of lighting and
light disturbances can be split into three cases that require an action.

The first case would be if the external lighting changes in such a way that the entire area
visible to the sensor, homogeneously appears brighter or darker. Since it is assumed that the
colour or colour shade can not change in the middle of the process, this scenario can be solved
by simply recalibrating the sensor. This feature has been implemented in the program. Another
approach could perhaps be to use some kind of light compensation, but that would require an
external light sensor. This external sensor would then have to be integrated in the system to be
able to communicate with the B&R sensor and that might not be possible for all sensors. On top
of this, it would require a controllable lighting that could be set to compensate for the ambient
lighting. However, in our case, only the number of light segments used can be changed and not
the light intensity itself. The lighting is therefore not continuous and would most likely not be
able to compensate in a good way. The lighting would then have to be changed using an external
light-rig. B&R has external lighting products which can easily be integrated and synchronized
with the sensor.

The second case would be if a light change would a↵ect only a part of the visible area. This
would result in a too large deviation and considered as a fault by the program. One way of
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solving this is by using more light to illuminate the fabric. However, this will also make the
fabric appear lighter, which has additional problems as stated above. Another way of solving
this problem is to prevent it from happening at all. That would require some kind of barrier or
alternatively a very controlled environment, where a light disturbance can not reach the visible
object. In addition with a barrier to prevent light disturbances, an external rig could be used
to light the fabric evenly rather than using the segments of the camera. This would especially
prevent the large di↵erence in deviation between dark and light fabrics due to the light intensity
being lower at the edges of the fabric than the middle.

The third case would be a light disturbance in the form of direct backlight. This case can
basically fit into the two other cases. If the light disturbance causes the entire visible area to
homogeneously appear as a di↵erent shade, the program will eventually recalibrate. If it on the
other hand only a↵ects a part of the visible area, the same applies as for the second case.

6.1.2 Sensor setup

The optimal sensor setup and configuration could not be tested, due to the fact that only the
1.3 MP sensor with a 12 mm lens was available. However, it was simulated, using the sensor at
hand, positioned at di↵erent distances from the fabric. Although the tests show that the system
would work, it still comes with a few disadvantages.

The maximum distance available between the machine and a potential mounting place is 1000
mm. The sensors could be mounted closer, but that would reduce the FOV and therefore require
more sensors. In order to keep the amount of sensors required at a minimum, the installation
distance will therefore be that of 1000 mm. This will, however, increase the area required by
the machine, together with the additional fault detection system, since no person or object can
be allowed to block the line of sight. If a person or object were to stand in the line of sight, it
would most likely result in the fault detection system classifying it as a fault and depending on
the nature of the fault, the system could potentially start to recalibrate itself incorrectly.

The sensor flashes every time an image is acquired. Images are acquired every 100 ms, which
means that there will be a new flash every 100 ms. The camera flash can be quite disturbing and
it will most likely a↵ect its environment in an unpleasant way. A possible solution would be to
have some kind of barrier or enclosure around the entire sensor system. This would be beneficial
considering other aspects as well, such as keeping the lighting consistent, as mentioned earlier.
Another potential solution would be to simply reduce the amount of light segments used. There
is no exact right answer to which or how many segments to use. Every choice comes with both
advantages and disadvantages and those have to be weighed and prioritized.

6.2 Program evaluation

6.2.1 O↵set values

For the program to be able to operate correctly, values from a correctly dyed fabric need to be
collected and used. This requires that an operator can ensure that the fabric is correctly dyed
at the start of the program. The program requires 20 pictures of a correctly dyed fabric, which
takes approximately 2 seconds to acquire, so the operator is not required to be present for a
very long time. From those 20 pictures variables such as average grayscale, deviation and o↵set
values are calculated. The o↵sets for deviation and grayscale values across the whole fabric are
based on the average deviation and grayscale value. The main characteristics of these o↵sets are
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to increase the margin in which a fabric can vary in deviation and grayscale value and still be
considered correctly dyed.

The o↵set values, or thresholds, are somewhat di�cult to determine and evaluate. The methods
to calculate the o↵sets are based on di↵erent measurements of grayscale and deviation of the
di↵erent textile samples available, which means that they are based on a fairly small amount
of colours and colour patterns. Although these values provide a working solution, they could
also cause some problems and they most definitely leave room for improvements. It would most
likely be more beneficial and accurate to base these values on mathematical or statistical pat-
terns, based on collected data from di↵erent lightings and colour shades, rather then very limited
tests. However, since the amount of samples available are limited and the lighting is not contin-
uous, it is di�cult to draw any such conclusions.

The light reaching the fabric is not uniformly distributed across the entire fabric. For dark
fabrics, it does not have much of an impact, which means that the grayscale remains approxi-
mately the same over the entire fabric. Any o↵sets used for dark fabrics, can be kept small and
thus minimizes the risk of a fault being able to fit within these o↵sets. For light fabrics however,
the impact is quite big and the di↵erence in grayscale between di↵erent models can be as much
as 20, which can be seen in Table 10. Such large o↵sets could potentially fit a fault as well,
meaning that a fault could go unnoticed if it does not lead to that the deviation across the entire
fabric is greater than the o↵set. The test setup uses one sensor, while the optimal setup would
use three. Using three sensors would result in more light and perhaps together they would create
a more uniformly distributed light. But since it can not be tested, it is not possible to know if
it would result in an improvement. An alternative solution would be to use an external lighting
instead of the built in LED segments.

The camera will be supervising a machine in a factory setting. This means that the lighting
in the room will most likely change now and then. The ceiling lights might be turned on or o↵
for example or if there are windows the outside lighting will have an impact. These changes in
lighting will result in the fabric having a di↵erent appearance and in order for the application to
be able to manage changes in lighting, a lightchange detection algorithm has been implemented
in the program. This algorithm uses experimentally determined o↵set values. Due to the fact
that light fabrics has a large deviation, even though it is correctly dyed, the limits used when
determining whether a light change has occurred or not, could also fit a fault. If the program
assumes that a light change has occurred, even though it in fact is a fault, the system would
then base its calibration on an incorrectly dyed piece of fabric. This could potentially mean that
any forthcoming faults will pass by undetected.

In general it can be seen as a compromise between sensitivity and how dynamic the system
is. Having a system that automatically detects changes in lighting, or a complete colour change,
since it results in the same behavior, makes the system dynamic. If a light is turned on or o↵ or if
an operator starts dyeing the fabric a di↵erent colour, nothing needs to be done by the operators
themselves in order for the system to be on the right track. But having the system behave in
such a way makes it less sensitive to changes and faults. The program could require the operator
to always restart the program when fabric of a di↵erent colour is coming or if a potential change
in lighting is detected. But since it was requested to make it as easy to use as possible and to
require as little operator interaction as possible, it was determined that a dynamic, self managing
program was better even though it would be less sensitive.
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6.2.2 Models drawn in camera HMI

The models used to define the ROIs within an image must be defined manually in the sensors’
HMI. They must be hand drawn in the image, which means that it is di�cult to place them in
the exact right position and having them the exact same size. In this project one model is used
to cover the entire image and then three models are used for each nozzle. The model for the
entire image is used to determine if a fault has occurred or not and the models for the nozzles are
used to make further diagnostics. The nozzle models are the ones that are di�cult to get exactly
correct. It does not necessarily a↵ect the systems’ ability to detect faults, but it does a↵ect its
ability to correctly analyze and diagnose these faults. However, the main purpose of this system
is to simply detect if a fault has occurred or not, and any further diagnostics can be considered
an unnecessary, but helpful feature. All models can be saved and reused as well, which means
that if the sensor remain in the same position, the models will only have to be made once.

The final function of the program was expected to be able to locate errors connected to spe-
cific nozzles, and through that be able to make conclusions about the system. This makes the
sensor very sensitive to how it is mounted. The model placement has to be very precise and
correspond to the right area of the nozzle. Another approach would be to use the models to give
an estimation on where on the fabric the error has occurred. This requires more of a human
interaction with the system to determine the source of the error but it would mean that the
sensor would work independent of its placement.

For knitted fabrics, the machine has a di↵erent configuration, see Figure 5. In order to avoid
potential shadows that can a↵ect the fabric, due to the arched shape of the cylinders, the height
of the FOV needs to be limited. This in turn means that only a part of the image make up the
ROI. There are two ways of handling this. The first way is to simply draw the models in such a
way that only the relevant parts of the image are used as ROIs. However, it makes the placing
of each model a bit more di�cult and time consuming, since it requires both horizontal and
vertical pixel coordinates. The other way is to use the pixel coordinates to determine the size
of the relevant area and then crop the image according to these coordinates. Each model then
require the horizontal coordinates only. The downside with this solution is that image cropping
can not be done during runtime, it must be done manually when the sensor is o✏ine. On the
other hand, it only has to be done once, when the sensor is started for the first time.

6.2.3 Edge detection

There are two di↵erent cases where some sort of edge detection is needed. The dyeing machine
from Imogo can handle fabrics with di↵erent widths and therefore the overall width of the fabric
will vary. Also, fabrics are less static in its shape than for example paper, meaning that the edges
of a fabric will vary instead of being one straight line. For both of these cases, if parts of the
cylinder, that the fabric is placed on, is visible in the models, the grayscale and deviation values
of the cylinder will have a large impact on the error detection. This was seen during the on
site tests where the deviation and grayscale values increased greatly when the sensor was taking
pictures of the cylinder, seen from Figure 23. Therefore, some edge detection algorithm is needed.

One way to detect the edges of the fabric is by using the vision function Measurement. Mea-
surement is able to detect objects based on predefined shapes, lines and circles, and based on
variables related to the grayscale value, such as contrast and grayscale transition, see section
4.3.3 for further explanation. This function can be used to detect an edge and output the corre-
sponding pixel coordinates. A second method to determine the edges of the fabric is by having
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an operator manually input the width of the fabric every time it would change.

Once the width of the fabric is determined the models covering the edges of the fabric could
be altered so that the edge of the model lines up with the edge of the fabric. However, the
models can not be changed during runtime via Automation Studio. Instead the image could be
cropped. To change the image the vision application would have to be uploaded again. This
procedure takes some time, in the range of seconds, which means that there would be some time
where the camera would not be able to take new pictures. If the width is changed due to that a
new fabric is being dyed with a new overall width this would be acceptable. The new vision appli-
cation would only have to be uploaded once in the beginning of the program. However, to detect
the edge variations that occur due to the fact that fabric, as a material, does not have a static
edge, would not be possible. It is possible that the edge would vary between each picture taken
and therefore a new vision application would have to be uploaded every time the camera takes a
picture, which is too time consuming. Therefore there would have to be some margin so that the
models do not cover the fabric all the way to the edges. Since the models can not cover the fabric
all the way out to the edges there is no way to ensure that the fabric is correctly dyed at the edges.

An operator would not be able to manually enter the small variations that occurs within the same
width of the fabric. The variations are too small and the operator would have to be engaged the
whole time. This would be the main purpose of using the VisionFunction Measurement. If some
margin would be used instead so that the models would not cover all the way to the edges of the
fabric, edge detection would only have to take place at the start of the program, to determine the
overall width of the fabric. If an operator is present too, for example overseeing the calibration
of the camera to gather values of a correctly dyed fabric, then the operator might also be able
to manually input the width of the fabric. If this is possible the usage of Measurement could
be excessive. If Measurement is used a B&R smart camera would have to be used to be able
to handle multiple vision functions. It would bring with it more complex code, where the edges
first would have to be detected, then altered and uploaded to the camera, and then the rest of
the code can run.

6.2.4 Limited number of test samples

The program is based on the fabric samples available, therefore there is a large amount of
scenarios that has not been tested. The colours used for testing are limited to two di↵erent
shades of blue and one white fabric. There is a possibility that there are shade di↵erences that
are visible to the human eye, but not to the camera. If the errors are very small they might
potentially not be registered. In the fabrics in Figures 8c and 8e the errors are very specific and
visible. Figure 8e shows an error caused by pressure drop in the system. In this textile sample,
the white and blue lines across the fabric are clearly visible to the sensor, but that might not
always be the case. It is possible that a fault due to pressure drop will be less significant and the
lines not as clearly visible. On top of this, these lines might not appear across the entire fabric.
For Figure 8c the source of the error is a clogged nozzle, for this example the darker line on the
right is distinct and there is a white line in the middle. If the clogged nozzle were not as a↵ected
then these colour di↵erences might be less clear. To be able to detect small variations in colour,
increased lighting might be one solution. However, this comes with other potential di�culties
as stated above. There are a number of errors that have not been identified, since they are not
present in the fabric samples used for this project, but they still need to be classified as faults,
even though the cause can not be stated. If none of the states ”pressure drop”, ”correct colour”
or ”wrong colour but correctly dyed” is registered, the state is simply registered as ”other error”.
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This is also what a clogged nozzle is registered as. An error caused by a clogged nozzle can have
many di↵erent colour patterns and is therefore redeemed to be categorised as an unspecified
error. Still, it can be located to a certain position on the fabric.

6.2.5 Error analysis

The main purpose of the camera is to register if an error has occurred. However, if possible, it
is preferred to further locate and analyse the error. When an unevenly dyed fabric is registered,
further analysis could be made about the error. Two di↵erent errors were looked into, errors due
to pressure drop and other errors, assumed to be caused by a clogged nozzle. The characteristics
of an error caused by pressure drop is that the fabric is darker where the nozzles overlap and
brighter in the middle. For the models used in all images, this corresponds to the segment,
covering one nozzle, being darker at the edges and brighter in the middle. This due to the
fact that the amount of paint coming from one nozzle is not enough to correctly dye the fabric.
The overlapping parts get paint from two nozzles, which means that although they will not be
correctly dyed, they still get a darker colour. The nozzles are connected in series from left to
right, which means that if a pressure drop has occurred, the amount of paint that is applied
should decrease the further right the nozzles are. The program will give an estimation about the
error for each nozzle, see Table 12, which could be used to make estimations about the entire
system. If an error for one nozzle is registered as Unevenly dyed-Other and the rest is registered
as No error, then the error for the system is probably related to one nozzle being clogged. If
multiple nozzles register Unevenly dyed-pressure drop, the cause is most likely pressure drop,
especially if the nozzles that register this error are in series. Additionally, when a pressure drop
occur, the mean gray value should decrease the further to the right the nozzles are since less
paint reaches those nozzles. Therefore, by comparing the grayscale values of the left half side of
the fabric with the right half side, it is possibly to conclude that it is in fact an error caused by
pressure drop in the system.

6.2.6 Dynamic system

Throughout the project there has been an evaluation on how much an operator has to be involved
in the system. If the width of the fabric should be automatically registered or if it should be
decided through human interaction? If an error is registered should a human conclude the source
of error or should the program be able to do that? Can it be guaranteed that the fabric initially
is correctly dyed so that the camera can calibrate correctly?

The way this program operates is by calibrating itself, based on a correct sample, and then
perform comparisons between measurements and di↵erent thresholds. This means that the pro-
gram is highly dependant on the fact that a calibration is done on a correct piece. If that is not
the case, the system will most likely fail its mission to detect other faults. It is not a di�cult
thing to ensure, that only correct pieces are used for calibration, but it does require more of an
operator interaction. The initial calibration requires the sensor to take 20 pictures and therefore
it has to be guaranteed that the fabric is correctly dyed for 2 seconds. This would perhaps be
considered an acceptable amount of time to supervise the system. Although the goal has been
to minimize the need for human interaction, it can not be removed completely, but it has been
limited to the initial installation only. The position of the sensor has to be at the right distance
and the models have to be drawn to cover the di↵erent segments. When the sensor is installed
it is considered su�cient if an operator is involved each time the width or colour is changed.
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6.3 On site test

Multiple tests were carried out on site with di↵erent fabrics and lighting in the room. The follow-
ing is mainly describing one test carried out since it included many functionalities of the program
and camera.

The camera managed to detect when a lighter coloured fabric was used to simulate an error
caused by a nozzle fault. This results in lighter lines on the fabric, which can be seen in the form
of spikes in Figures 23a and 23c. In Figure 23b it can also be seen that the error message switches
from CorrectColour to UnevenlyDyed and then back to CorrectColour again, which corresponds
to the light fabric being placed over the main fabric and then removed again. By looking at the
grayscale value and the deviation of the entire image it is also clear that a lighter fabric is placed
on top of the main fabric. The average grayscale value is 110.58 and when the fabric is lying still
and only the main fabric is in picture the grayscale value is close to the average value. When the
ErrorMessage changes value to UnevenlyDyed the grayscale value rises to a value around 135.00,
which indicates that a lighter fabric is in the picture. The deviation changes value too, which
indicates that a di↵erent coloured fabric enters the picture. The average deviation value is 25.22
and when only the main fabric is in the picture the deviation has similar values. However, when
the ErrorMessage changes value to UnevenlyDyed the deviation increases to values around 58.80.

By looking at the grayscale values for each model, the error from the lighter fabric can be
specified to a certain area of the fabric. When ErrorMessage changes value to Unevenly Dyed
the first time, the grayscale value of model M1, R1, and M2 which corresponds to models cover-
ing the middle and right of segment 1 as well as left of segment two, see Figure 6 for explanation
on model placements. This indicates that the disturbance fabric covers the left side of the fabric.
However, not all the way to the left edge. The fact that di↵erent models show di↵erent grayscale
values, depending on whether the disturbance fabric or the main fabric is in the models ROI,
shows that it would be possible to pinpoint errors to certain areas of the fabric. This functional-
ity makes it possible to further analyze di↵erent faults, compared to simply stating that a fault
has occurred.

Once the fabric starts to move, which means that the fabric is pulled through the machine,
the grayscale value starts to vary. Similar tests were made multiple times, for all tests the
grayscale value started to oscillate once the fabric started moving. During the test presented,
there were some variations in grayscale value, however the camera was still able to make correct
evaluations about the fabric. Figure 25 shows an image of the fabric, acquired by the sensors.
This is the picture that grayscale values is retrieved from. There are two aspects of this picture
that could have an e↵ect on the variation in grayscale values. Firstly, there are creases on the
fabric. During the test the fabric was dry, which makes it easier for creases to appear. If the
fabric had actually been dyed, it would be wet from the paint. On top of this, if the machine had
been running correctly, the fabric would be have been kept stretched, which would reduce the
amount of creases. When the fabric is pulled rather then rolled through the cylinder, it could
potentially create creases. Since creases creates shadows, the grayscale values across the fabric
will change depending on the creases. Secondly, fabrics have small gaps between the threads,
compared to paper for example that has a more smooth surface. These gaps will create a colour
di↵erence, which can be visible if the camera is placed close to the fabric. The image quality is
not known when the machine is running and pictures should be taken on the fabric when moving.
There is a possibility that when the fabric starts moving and the image becomes increasingly
blurry, the gaps between the threads becomes harder to detect and will therefore change the
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image and through that change the grayscale value. This will not necessarily be a large problem,
if the fabric is moving with a constant speed, the calibration will also be performed on a moving
fabric. However, errors might be harder to detect if the image quality becomes worse when the
fabric starts moving. The exposure time for this project has been fixed on a certain value since
most tests have been performed on a static fabric. The fabric will move from the time that the
shutters open to that they close. By lowering the exposure time the fabric will have moved less
and more details in the fabric will be visible but this would require more light when taking a
picture.

Figure 25: Picture of fabric from the smart sensor

The tests carried out on site, tested the main functions of the sensor and there are multiple
tests that should be carried out before the sensors can be used on real machines, see Section 7.
However, the test do show that it is possible to detect errors using the camera in an industry
factory as well as in an o�ce environment.

6.4 Other possible solutions

In section 2.2 other possible solution were presented. With the B&R smart sensor as reference,
the other solutions have been evaluated and compared based on the following criteria: Available
Functionality, Sensor Configurations, Integration Complexity and Potential Cost. It would be
beneficial to also evaluate the performance of these sensors, but since there are few or none
scientific papers about specific vision sensors, their performance in di↵erent applications can not
be determined, only speculations can be made.

6.4.1 Other vision systems & vision systems in general

Most vision systems available on the market are most commonly used for detection of faults of a
smaller nature than this project. Their purpose is to perform simple pass/fail operations, based
on di↵erent parameters, such as shape, size and colour. Vision systems are perhaps not limited
to perform such tasks, but this suggests that maybe a di↵erent type of fault detection system
could be more beneficial and better suited for this specific problem.

Keyence IV3-600 smart camera

The relevant tools of the Keyence IV3-600 smart cameras are similar to the ones o↵ered by
the B&R sensor. The advantage of this sensor is the possibility to use ML, together with train-
ing data, to fit models of correctly and incorrectly dyed pieces of fabric. This would mean that an
acquired image is compared to di↵erent models, rather than more uncertain thresholds or o↵sets,
which in turn would make the system more robust and less based on experimental data. The
machine from Imogo is based on B&R products, which makes the B&R sensor optimal from an
integration point of view, but the Keyence sensor would most likely also be possible to integrate
in the current system, since compatible communication protocols exists.

The Keyence camera might o↵er an improvement regarding the software part of the detection
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method, but the hardware setup would remain the same. In order to get as big FOV as possible,
while using as few sensors as possible, the installation distance has to be 2000 mm, which is
worse than for the B&R sensor. Three cameras on each side of the fabric are still required to
fit the full width of 3600 mm. The fairly large distance between camera and object would also
make the system more sensitive to light changes and light disturbances and it would mean that
a larger area will have to be occupied by the machine.

6.4.2 Sensor based solution

A camera comes with many advantages and makes it possible to make more advanced analysis of
the pictures. However, the complexity of using a camera also brings more configuration choices
and a greater sensitivity to disturbances. This means that a colour sensor would be a more sim-
ple and straight forward solution. However, when looking at di↵erent colour sensors, such as the
CSS High Resolution from SICK or the OFP401P0189 Color Sensor from Wenglor, there is one
common disadvantage. The light spot has such a small diameter of a couple of millimeters only,
which means that it is very di�cult to cover the entire width of the fabric with colour sensors.
If the whole fabric were to be covered, a great amount of colour sensors would be needed which
would be an expensive solution. Especially unevenly dyed patterns that are caused by partially
clogged nozzle would be very hard to detect. The errors could occur at random places, which
would make it hard to place colour sensors in such a way that it could be guaranteed that no
errors had occurred, without covering the entire width.

Stemmer Line-Scan-Bar

The Line-Scan-Bar from Stemmer o↵ers many improvements. The working distance of 27 mm
is very small, which means that the system would be less sensitive to disturbances. The LEDs
distributed along the bar would create a uniform light across the fabric, which would most likely
reduce the di↵erences between fabrics of di↵erent colours and by that reduce the need for large
o↵sets. However, the system would still have to be based on o↵sets, which means that all the
requirements needed to determine good o↵sets still remain. Since the widest bar is 1688 mm,
three sensors would be needed on each side. However, the width of the bar is 1755 mm, which
could potentially mean that there is an area between the three bars that will simply not be
visible to either of them. Therefore there would have to be some overlap between the sensors to
cover the entire fabric.

Both the B&R sensors and the sensor from Keyence come with a user friendly interface, which
makes it quite simple for the user to change di↵erent settings and test di↵erent configurations
and parameters. The Stemmer Line-Scan-Bar is perhaps a bit more complex in comparison,
since all settings and parameters are altered using register values.

PLEVA Material Moisture AF.RF.MP 120

It would be possible to use the sensors from PLEVA in combination with the rest of the PLC
system from B&R, since compatible communication protocols exists. An advantage that comes
with moisture sensors is that the lighting parameter and di↵erent disturbances, in the form of
creases and shadows, do not have an impact. This means that the system would be less sensitive
to complications regarding these kinds of parameters.

The sensors from PLEVA are sensitive and likely to be able to register small variances in ap-
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plied paint. An accuracy of ±1 is su�cient for this project, and the best cases of 0.3gH2O/m2

or 0.8gH2O/m2 are both very accurate when compared to the measuring range. However, the
amount of paint used in the machines from Imogo vary greatly and there are cases where the
paint used exceeds 200gH2O/m2 and therefore the RF120 is not a possible option.

One constraint is the size of the setup. Especially when dyeing knitted fabrics, the space where
the sensor can be placed is small, see Figure 5. The frame would have to be placed between to
cylinders for the fabric to be able to flow freely through the sensor frame. For both sensors but
especially for the traversing heads, the frame depth is large enough to require an alteration in
the mechanical design for the Imogo machine.

A problem with the PLEVA sensors is that they are made for a di↵erent kind of dyeing ma-
chine. The padder control solution is based on the more traditional kind of dyeing machines,
where the fabric goes through a colour bath. Besides the fact that this results in a more wet
fabric, this also give rise to a set of completely di↵erent faults, compared to the spray nozzle
technique in Imogo’s machines. When using spray-nozzles there is a greater risk of getting spots
or lines that are not dyed. These spots and lines are connected to specific nozzle areas, but
could still occur in di↵erent parts of the fabric. Using only three sensors is therefore not enough
for Imogo’s machine. It does not provide enough information to tell whether the entire fabric is
correctly or incorrectly dyed, since there is a possibility that an error appears between the areas
covered by two sensors heads. One measuring head covers an area of 250mm while the maximum
width of the fabric is 3600mm, which means that there is a large area between two measuring
heads that is not covered.

To be able to use the traversing sensor MP120 there is a need to make alternations to the
Imogo dyeing machines because of the size of the frame. It could be used to gather information
about the entire fabric and maybe separate between correct and faulty dyed fabrics. If used
under supervision on a correct fabric, the values from a correct fabric could be used as reference
value for further measurements, the same way the B&R camera calibrates at the start of the
program. Since the traversing sensor would only be able to di↵er between right and wrong,
rather than make further analysis on the errors, like error placement, it might not be worth the
alterations needed to the mechanical design to be able to fit the frame. The static sensors AF120
are well suited for a dyeing system using padder control, but for a system using spray-nozzles
there is no way to ensure that there are no errors between the sensors. To be sure that the fabric
is correctly dyed the whole area of the fabric would have to be covered, which could be done by
increasing the amount of static sensors. To be able to cover a fabric width of 3600mm wide, 15
sensors would have to be used. This could be a very expensive solution.

6.4.3 Evaluation of other solutions

Figure 26 shows an evaluation of all the possible solutions presented above. The di↵erent solu-
tions have been evaluated and compared to the B&R sensors based on the four criteria seen in
the figure.

As can be seen in the figure, the Stemmer Line-Scan-Bar is considered the best alternative,
mainly due to its short working distance and large FOV. Still, no solution is considered a perfect
fit, since they all come with both advantages and disadvantages. Since the Imogo machines are
based on B&R systems all other solutions are considered to have a greater integration complexity.
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Figure 26: Screening matrix

6.5 Conclusion

The solution has both advantages and disadvantages. It performs well when it comes to de-
tecting faults on static pieces of fabric and could potentially do the same on moving fabric if
the fabric is free from shadows and creases. By using a vision sensor it is possible to actu-
ally look at the visible result, but at the same time a vision system is an interaction between so
many di↵erent parameters and settings that it becomes di�cult to find the optimal configuration.

Lighting is the most important parameter, but also the hardest one to control. In order for
the system to present a high level of sensitivity and robustness and still be dynamic enough, the
environment around the system should preferably be controllable in terms of light and distur-
bances. If it is possible to make alterations to the machine design so that the camera is isolated
from surrounding light and adding an external light source then the performance of the camera
would increase. This would most likely remove the big di↵erences between dark and light fabrics,
which in return would make it possible to have more sensitive o↵sets.

Vision based solutions are sensitive, di↵erences in light has a big impact on the results, it requires
a certain distance between camera and object, and the fabric preferably has to be straight with
no creases. However, it is a solution that is possible to apply to multiple settings. The dyeing
machine from Imogo requires some flexibility from the fault detection system. Di↵erent machine
configurations are used depending on if the fabrics are woven or knitted. Certain errors, related
to clogged nozzles for example, can appear anywhere on the fabric and therefore the colour pat-
terns are hard to determine beforehand. A solution such as the sensor used in this project does
have a benefit regarding these aspects, since it can be mounted in many di↵erent ways to fit the
di↵erent machine configurations. Other solutions have been looked into and some provide similar
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adjustable configurations, while others are very dependant on that the Imogo machine works in a
certain way. To be able to use the vision sensor on a real machine however, further testing should
be made. A camera with the right sensor configurations should be used in combination with an
external light rig. Further testing on fabric samples should also be made to both make sure that
it works on a larger variety of fabric colours and to get a clear sense of how sensitive the camera
is to colour di↵erences. With further testing and development in a controllable environment, an
optimal system could be determined and di↵erent parameters could be set. Controllable lighting
and a continuous spectrum of colour shades could potentially make it possible to detect certain
mathematical and statistical patterns, which in turn could be used to set the di↵erent o↵sets.

Other solutions has been looked into and evaluated and there are both benefits and downsides
with each solution. The IV3-600 smart camera from Keyence does have a benefit when it comes
to training the camera using machine learning to detect errors. However, since the field of view
is worse than for the B&R smart sensors, it would serve as no improvement regarding the sensor
setup. The material moisture sensors from PLEVA are unrelated to vision, which would mean
that all of the complications that comes with lighting and creases on the fabric could be ignored.
It would, however, not be possible to use it in a way that would ensure that the entire fabric
is error free, since there would be areas on the fabric that would be unchecked. The possible
solution that most likely could be used instead of the smart sensor from B&R is the Line-Scan-
Bar from Stemmer. Since the distance between the sensor and the fabric is much shorter than
for the smart sensor, any disturbances from inconsistent lighting would have less of an impact.
The distance between the Line-Scan-Bar and the fabric would be 27mm and provide a FOV of
1688mm. The sensor would require a distance of 1250mm to be able to reach the same FOV. The
same problems with edge detection for the smart sensors will remain for the line scan bar. Since
the edge will vary for the fabric, the edge would have to be manually decided. Further testing
would have to be made in order to be sure that the line scan bar would be a better solution than
the smart sensor. The sensitivity of the line scan bar has to be tested to see how well it can
di↵erentiate between colours and how small the errors can be and still be noticed. Creases and
shadows that can occur due to the characteristics of fabrics will most likely still have an impact,
even if it would be a smaller one.

It has been proven that it is possible to detect faults using the B&R machine vision sensor.
How well it can perform has to be further elaborated. Large errors can be detected and it is a
first step towards a solution that can be used for fault detection in a real machine. There are
improvements that can be made to the software, mainly to the o↵set selection and error classi-
fication when more samples of di↵erent colours and errors are analyzed. With small alterations
to the machine design, such as an external light rig and a barrier that reduces surrounding light
disturbances, the performance of the camera could improve greatly.
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7 Future work

This sections presents future work that can be made in order to improve the solution.

In order to create a fully functioning and well optimized fault detection system, more testing has
to be made. Optimally in a di↵erent environment, where things such as lighting, disturbances
and samples are continuous and controllable. This would make it possible to draw more mathe-
matical conclusions on what kind of o↵sets or thresholds to use and to make sure that the system
is robust and can fit many di↵erent types of colours and patterns.

The setup used in this project is limited by a number of factors and even though a setup,
that is believed to fit the application well, has been determined, it has not been tested. If the
system should be further developed, it should be tested with the 4.6 mm lens and the correct
amount of sensors. On top of this, it should be tested with sensors on both sides of the fabric,
since a proper system is required to look at both sides. It should be fairly easy to use multiple
sensors, since they are easy to integrate and synchronize, but still it is hard to predict how the
system would behave. More cameras in use means more light coming from the sensors, which
might have an impact. The flash from one sensor is very likely to reach the sensor next to it,
therefore testing with multiple sensors should be done. On top of this, the fabric can be quite
thin, which means that if there are sensors on both sides of the fabric, the light coming from
the flash will most likely shine through the fabric. Sensors on di↵erent sides could potentially
serve as disturbances for each other, which means that this case needs to be properly tested
and evaluated. One possible way to solve this is by having each side do a di↵erent task for
each cycle. Since the program is structured in such a way that image acquisition is performed
in one cycle and image processing in the next, sensors on one side could acquire images when
the other side is processing their image and then switch for the next cycle. This means that
in one cycle, only one side will take a picture. The parameters set for this project might have
to be re-tuned when multiple cameras are in use. If an external light rig is used instead of
the flash of the camera then further testing with the new setup should be made. More sen-
sors would most likely also require software changes, since more models will be used. The line
up between these and how to extract the correct data from the correct place might not be as
straight forward as it is for the one sensor case. A multiple sensor based system would also need
more features and functionalities, such as edge detection in order to detect where the fabric ends.

Only one test has been done on the real machine, which has not covered all of the errors that
could occur when it is running. In order to create a truly good fault detection system, it would
have to be further tested on the real machine, when it is operating correctly. It would also be
interesting to test and evaluate the e↵ect of di↵erent additional equipment, such as an external
backlight and/or a barrier. Lighting plays a key role in how well a vision system works, therefore
such additional equipment have the potential of improving the system and making it more robust
and reliable.
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